Rita Sharma (Associate Professor) Lesson plan of Organic Chemistry B.Sc – Non-Medical, Medical and BioTech 3rd semester, (Session 2020-2021)	
WEEKS	CHAPTER
1.	Alcohols
	Monohydric alcohols nomenclature, methods of formation by reduction of
	aldehydes, ketones, carboxylic acids and esters.
2.	Hydrogen bonding. Acidic nature.Reactions of alcohols. Dihydric alcohols
	 nomenclature, methods of formation, chemical reactions of vicinal
	glycols,
3.	oxidative cleavage [Pb(OAc)4 and HIO4] and pinacol-pinacolone
	rearrangement.
4.	Epoxides
	Synthesis of epoxides. Acid and base-catalyzed ring opening of epoxides,
	orientation of epoxide ring opening, reactions of Grignard and
	organolithium reagents with epoxides
5.	Phenols
	Nomenclature, structure and bonding. Preparation of phenols, physical
	properties and acidic character. Comparative acidic strengths of alcohols
	and phenols, resonance stabilization of phenoxide ion.
6.	Reactions of phenols — electrophilic
	aromatic substitution, Mechanisms of Fries rearrangement, Claisen
	rearrangement, Reimer-Tiemann reaction, Kolbe's reaction and Schotten
	and Baumann reactions
7.	Ultraviole t (UV) absorption spectroscopy
	Absorption laws (Beer-Lambert law), molar absorptivity, presentation and
	analysis of UV spectra, types of electronic transitions, effect of
	conjugation.
8.	Concept of chromophore and auxochrome. Bathochromic, hypsochromic,
	hyperchromic and hypochromic shifts. UV spectra of conjugated enes and
	enones,Woodward-Fieser rules,
9.	calculation of max of simple conjugated dienes and , -unsaturated ketones.
	Applications of UV Spectroscopy in structure elucidation of simple organic
10	compounds.
10.	Carboxylic Acids & Acid Derivatives
	Nomenciatu re of Carboxylic acids, structure and bonding, physical
	properties, acidity of carboxylic acids, effects of substituents on acid
11	Strengtn.
11.	Preparation of carboxylic
	acius. Reactions of carboxylic acius. Hell-Volnaru-Zellinsky reaction.
10	Reduction of carboxylic acids.
12.	iviechanism of decarboxylation. Structure, nomenciature and
	preparation of acid chlorides, esters, amides and acid annyondes. Relative
12	S tability of acyl defivatives.
13.	Physical properties, interconversion of acid derivatives by
	nucleophilic acyl substitution. Iviecnanisms of ester ification and
	nyaroiysis (aciaic
	and dasic).

Dr. Shish Ram Yadav (Associate Professor) Lesson plan of Organic Chemistry	
B. WEEKS	Sc-Non-Medical, Non-Medical and BioTech 2nd semester, Session 2020-2021
1	CHAFTER Structure and Bonding
1.	Localized and delocalized chemical bond, vander Waals interactions
	resonance conditions
2	resonance effect and its applications, hyperconjugation, inductive
2.	effect. Electromeric effect & their comparison
3.	Stereochemistry of Organic Compounds-I
	Concept of isomerism. Types of isomerism. Optical isomerism.
	elements of symmetry, molecular chirality, enantiomers, stereogenic
	centre, optical activity
4.	properties of enantiomers, chiral and achiral molecules with two
	stereogenic centres, diastereomers, threo and eryth ro diastereomers,
	meso compounds
5.	Resolution of enantiomers, inversion, retention and racemization.
6.	Stereochemistry of Organic Compounds-II
	Relative and absolute configuration, sequence rules, R & S systems of
	nomenclature. Geometric isomerism determination of configuration of
	geometric isomers. E & Z system of nomenclature,
7.	Conformational isomerism conformational analysis of ethane and n-
	butane, conformations of cyclohexane, axial and equatorial bonds,.
8.	. Newman projection and Sawhorse formulae, Difference between
	configuration and conformation.
9.	Mechanis m of Organic Reactions
	Curved arrow notation, drawing electron movements with arrows, half-
	headed and double-headed arrows, homolytic and heterolytic bond
10	breaking.
10.	Types of reagents – electrophiles and nucleophiles. Types of organic
	reactions. Energy considerations. Reactive intermediates carbocations,
	carbanions, free radicals, carbenes, arynes and
	nitrenes (formation, structure & stability). Assigning formal charges on
11	Intermediates and other ionic species.
11.	Alkanes and Cycloalkanes
	roup elessification of earbon stome in alkanes, loomericm in alkanes
	group, classification of carbon atoms in alkanes. Isomensin in alkanes,
	reaction. Kolbe reaction
12	Corev-House reaction and decarboxylation of carboxylic acids)
12.	physical properties. Cycloalkanes pomenclature, synthesis of
	cvcloalkanes and their derivatives – photochemical (2+2) cvcloaddition
	reactions.
13.	dehalogenation of -dihalides, pyrolysis of calcium or barium
	salts of dicarboxylic acids. Baever's strain theory and its limitations
	theory of strainless rings.

Name Dr Manju		_
Lesson plan of Physical Chemistry		
<u>B.Sc</u>	cNonmedical, Medical and Biotech 5th semester, session-2021-2022	
WEEKS	CHAPTER	
<u>l.</u>	Chapters	-
	1.	
	Unit-1: Quantum Mechanics-I Black-body radiation, Plank's radiation law,	
<u>2.</u>	photoelectric effect, heat capacity of solids, Compton effect, wave function	_
	and its significance of Postulates of quantum mechanics.	
<u>3.</u>	2.	-
	Quantum mechanical operator, commutation relations, Hamiltonial operator,	
	Hermitian operator, average value of square of Hermitian as a positive	
	quantity	
4	qualitity.	
<u>+.</u>	Kole of operators in quantum mechanics, to show quantum mechanicany	-
	that position and momentum cannot be predicated simultaneously.	
<u>5.</u>	Determination of wave function & energy of a particle in one	-
	dimensional box, Pictorial representation and its significance.	
<u>6.</u>	Doubts, Class test	_
<u>7.</u>	Unit-2: Physical Properties and Molecular Structure Optical activity,	_
	polarization – (clausius – Mossotti equation	
<u>8.</u>	Orientation of dipoles in an electric field, dipole moment, included dipole	_
	moment, measurement of dipole moment-temperature method	
0		
<u>9.</u>	refractivity method, dipole moment and structure of molecules.	-
<u>10.</u>	Magnetic permeability, magnetic susceptibility and its determination.	-
	Application of magnetic susceptibility.	
11.	magnetic properties – paramagnetism diamagnetism and ferromagnetics	
	magnetie properties paramagnetism, diamagnetism and terromagneties.	-
12	Doubte Class test	
<u>12.</u>	1000013 (C1035 1031	-

-

	Manju bala (Ext Lecturer) Lesson plan of
Physical C	Chemistry
]	B.Sc - Pass Course, Medical and BioTech 1stsemester,
2020-21	
WEEKS	CHAPTER
1.	Gaseous state :- Maxwell's distribution of velocities
	and energies, calculation of root mean square
	velocity, average velocity and most probable velocity.
2.	Collision diameter, collision frequency and mean free
	path, deviation of real gases from ideal behaviour.
3.	Derivation of vander waals equation of state, its
	application in the calculation of Boyle's temperature,
	explanation of behaviour of real gases using vander
	waals equation.
4.	Critical phenomenon:- critical temperature, critical
	pressure, critical volume and their determination, PV
	isotherms of real gases.
5.	Continuity of state, isotherms of vander waals equation,
6.	Relationship between critical constants and vander
	waals constant, critical compressibility factor, law of
	corresponding state.
7.	Assignment and test of gaseous state and critical
	phenomenon.
8.	Liquid state:- structure of liquid, properties of liquid-
	surface tension, viscosity, vapour pressure and optical
	rotation and their determination.
9.	Solid state:- classification of solids, laws of
	crystallography -law of constancy of interfacial angles,
	law of rationality of indices, law of symmetry.
	Symmetry elements of crystal.
10.	Definition of unit cell and space lattice, bravais lattice
	crystal system. X- RAY diffraction by crystal.
	Derivation of bragg equation. Determination of crystal
	structure of Nacl and Kcl.
11.	Liquid crystal:- difference between solids, liquids and
	liquid Crystals, types of liquid crystal, application of
10	liquid crystal.
12.	Assignment and test of liquid state and solid state

Lesson plan of Physical Chemistry Dr. Rajkumari Jadon (Extension Lecturer)	
	B.ScNonmedical, Medical and Biotech 5 rd semester, Session 2020-21
Weeks	Chapters
1	Unit-3: <u>Spectroscopy-I Introduction</u> : Electromagnetic radiation, regions of spectrum, basic features of spectroscopy.
2	Statement of Born oppenheimer approximation, Degrees of freedom.
3	Rotational Spectrum Diatomic molecules. Energy levels of rigid rotator (semi-classical principles), selection rules,
4	spectral intensity distribution using population distribution (Maxwell-Boltzmann distribution
5	Determination of bond length, qualitative description of non-rigid rotor, isotope effect.
6	Doubt and class test
7	Unit-4: <u>Spectroscopy-II Vibrational spectrum Infrared spectrum:</u> Energy levels of simple harmonic oscillator, selection rules.
8	Pure vibrational spectrum, intensity, determination of force constant and qualitative relation of force constant and bond energies.
9	Effects of anharmonic motion and isotopic effect on the spectra, idea of vibrational frequencies of different functional groups.
10	Raman Spectrum: Concept of polarizibility, pure rotational and pure vibrational Raman spectra of diatomic molecules,
11	selection rules, Quantum theory of Raman spectra.
12	Doubt and class test

	Amit Gupta (Ext Lecturer) Lesson plan of Physical Chemistry
	B.Sc – Non-medical, Medical and BioTech 3rd semester 2020-2021
WEEKS	CHAPTER
1.	Thermodynamics-I: - Definition of thermodynamic terms:
	system, surrounding etc. Types of systems, intensive and extensive
	properties. State and path functions and their differentials.
	Thermodynamic process.
2.	Thermodynamics scale of temperature. Concept of entropy- Entropy as
	a state function, entropy as a function of "V", "T" and
	"P",Entropychange in reversible and irreversible process
3.	Heat capacity, heat capacities at constant volume and pressure and
	their relationship.
4.	Joule's law – Joule – Thomson coefficient for ideal gass and real gas: and
	inversion temperature.
5.	Thermodynamics-II Calculation of w.q. dU & dH for the expansion of
	ideal gases under isothermal and adiabatic conditions for reve rsible
	process
6.	Temperature dependence of enthalpy, Kirchoffs equation. Bond
	energies and applications of bond energies.
7.	Chemical Equilibrium: - Equilibrium constant and free energy,
	concept of chemical potential, Thermodynamic derivation of law of
	chemical equilibrium.
8.	Temperature dependence of equilibrium constant; Van't Hoff reaction
	isochore, Van't Hoff reaction isotherm
9.	Le-Chatetier's principle and its applications Clapeyron equation and
	Clausius – Clapeyron equation its applications.
10.	DistributioIn Law :- Nernst distribution law – its thermodynamic
	derivation,
11.	Modification of distribution law when solute undergoes dissociation,
12.	association and chemical combination. Applications of distribution law:
13.	(i) Determination of degree of hydrolysis and hydrolysis constant of
	aniline hydrochloride.
14.	(ii) Determination of equilibrium constant of potassium tri-iodide
	complex and process of extraction
15.	Test and revision

	Department of Chemistry Name-ANU YADAV (Assistant Professor) Subject-Inorganic Chemistry Class-B.ScNonmedical, Medical and Biotech Semester-3 rd semester Session 2020-21
Weeks	Chapter
1.	Unit-1 : Chemistry of Elements of Ist transition series: Definition of transition elements, position in the periodic table, General characteristics & properites of Ist transition elements.
2.	Structures & properties of some compounds of transition elements – TiO2, VOCl2, FeCl3, CuCl2 and Ni (CO)4
3.	Unit-2 :General characteristics and properties of the IInd and IIIrd trans ition elements.
4.	Comparison of properties of 3d elements with 4d & 5d elements with reference only to ionic radii, oxidation state, magnetic and Spectral properties and stereochemistry.
5.	Revision of Unit-1 and Unit-2, Class Test
6.	Unit-3: Coordination Compounds Werner's coordination theory.
7.	Effective atomic number concept, chelates, nomenclature of coordination compounds.
8.	Isomerism in coordination compounds.
9.	Valence bond theory of transition metal complexes.
10.	Unit-4: Physical properties of a solvent, types of solvents
11.	General characteristics of solvent and reactions in non-aqueous solvents with reference to liquid NH3 and liquid SO2
12.	Revision of Unit-3 and Unit-4,Class Test

Department of Chemistry

Name of the Teacher – Pooja Rani

Paper - Inorganic Chemistry

Semester - Ist sem Session 2020-2021

Days	Topic to be covered
First	Idea of de Broglie Matter Waves, Heisenberg Uncertainty Principle
Week	
Second	Atomic Orbitals, Quantum Numbers
Week	
Third	Radial and Angular Wave Functions, Probability Distributioncurves
Week	
Fourth	Shapes of s, p, d orbital's
Week	
Fifth	General Principles of Periodic Table: Aufbau and Pauli Exclusion Principles, Hund's
Week	Multiplicity Rule. Electronic Configurations of the Elements, Effective Nuclear
	Charge, Slater's Rules
Sixth	Atomic and Ionic Radii, Ionization Energy, Electron Affinity and Electronegativity -
Week	Definition
Seventh	Methods of Determination or Evaluation, Trends in Periodic Table (ins & p block
Week	elements)
Eight	Valence Bond Theory and Its Limitations, Directional Characteristics
Week	of Covalent Bond, Various Types of Hybridization and Shapes of
	Simple Inorganic Molecules and Ions (BeF ₂ ,BF ₃ , CH ₄ , PF ₅ , SF ₆ ,
	$IF_7 SO_4^{2-}, ClO_4^{-})$
Ninth	Valence shell electron pair repulsion (VSEPR) Theory to NH ₃ , H ₃ O ⁺ , SF
Week	4, CIF_3 , ICI_2^- and H_2O . MO Theory of Heteronuclear (CO and NO)
	Diatomic. Molecules, Bond Strength and bond energ, Percentage
	Ioniccharacter from Dipole Moment and Electronegativity Difference
Tenth	Ionic Structures (NaCl, CsCl, ZnS (Zinc Blende), CaF ₂) Radius Ratio
Week	Effect and Coordination Number, Limitation of Radius Ratio Rule,
	Lattice Defects
Eleventh	Semiconductors, Lattice Energy (Mathematical Derivation Excluded)
Week	and Born-Haber Cycle
Twelfth	Salvation Energy and its Relation With S olubility of Ionic Solids,
Week	Polarizing Power and Polarisability of Ions, Fajan's rule.